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Pseudospectral method for the Kardar-Parisi-Zhang equation
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We discuss a numerical scheme to solve the continuum Kardar-Parisi-Zhang equation in generic spatial
dimensions. It is based on a momentum-space discretization of the continuum equation and on a pseudospectral
approximation of the nonlinear term. The method is tested in (111) and (211) dimensions, where it is shown
to reproduce the current most reliable estimates of the critical exponents based on restricted solid-on-solid
simulations. In particular, it allows the computations of various correlation and structure functions with high
degree of numerical accuracy. Some deficiencies that are common to all previously used finite-difference
schemes are pointed out and the usefulness of the present approach in this respect is discussed.
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I. INTRODUCTION

Surface growth is a paradigmatic problem of nonequil
rium statistical mechanics with widespread potential appli
tions such as molecular beam epitaxy, fluid flow in poro
media or flame fronts@1,2#.

For such extended systems, it is a rather intricate ques
how to connect, in a direct way, microscopic interactions
the dynamics at mesoscopic or coarse-grained scales.
nomenological models, based on stochastic partial differ
tial equations, selected according to symmetry principles
conservation laws, are often capable to reproduce var
experimental data. The most well known of these model
the one introduced by Kardar, Parisi, and Zhang~KPZ! @3#.
The equation introduced by these authors engendered
enormous amount of work that addressed the large num
of issues related to it@4#. Yet, many fundamental propertie
of the KPZ equation are still not well understood. Usi
renormalization group~RG! theory, various authors at
tempted to estimate critical exponents and the upper crit
dimension@5–8#. The success of this procedure has be
limited, so far, by the difficulties of RG techniques to rea
the strong-coupling regime. An alternative route to study s
chastic partial differential equations, which yields an ea
and reliable access to critical exponents, hinges on the
called restricted solid-on-solid~RSOS! growth models
@9–11#. This approach is based on simple rules for deposit
and diffusion of particles on a discrete lattice, and it can
implemented in a very efficient and fast way on a compu
However, there is noa priori guarantee that a RSOS mod
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belongs to the universality class of the continuum equati
albeit there is a general belief in this sense. Moreover,
corresponding coupling parameters possess fixed value
the RSOS case, a feature that prevents the exploration o
entire phase diagram of the KPZ equation.

Given these premises, numerical integration appears
the most direct and definite way to determine the universa
class of a given continuum equation. So far, finite-differen
methods have been exploited in the context of the KPZ eq
tion @12–14#. In this framework, Lam and Shin@15# have
shown the jeopardy of selecting an incorrect discretization
the framework of finite-differences algorithms. In this wor
we follow a different route and propose a numerical sche
based on a pseudospectral representation.

Spectral methods, although almost routinely employed
fluid mechanics@16#, have not, so far, been used in the co
text of stochastic equations except in Ref.@17#. In this latter
work, two of us have introduced in the simple (111) case, a
discretization algorithm based on a pseudospectral sch
that outperforms classical finite differences on various
spects. The present work generalizes the spectral metho
the nontrivial (211) case, where no exact results are ava
able and where finite-differences methods may be hamp
by large discretization effects, as we will shortly discu
Extended numerical simulations for the (211) case, are then
reported, along with comparisons with results based
finite-differences schemes. The absence of uncontrolled
cretization effects also allow us to compute various corre
tion functions and critical exponents in a rather precise a
reliable way. Particularly interesting is the computation
various height-height correlation functions and of the str
ture factor, which were not previously calculated.

The plan of the remaining of the paper is as follows.
Sec. II, we address the general features of finite-differen
discretizations and introduce the new pseudospectral pr
dure. Section III contains definitions of the various quantit

y.
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employed in this work as well as their pertinent scali
forms. Results are presented in Sec. IV for the (111) di-
mensional and in Sec. V for the (211)-dimensional cases
respectively. Conclusions and perspectives are include
Sec. VI.

II. THE DISCRETIZED KPZ EQUATION

We consider ad-dimensional substrate and denote withx
the d-dimensional vector locating a point on it. The surfac
which grows on this substrate, is described at each timet by
its height h(x,t). In the continuum approximation, whic
disregards overhangs, this dynamics generically satisfie
stochastic partial differential equation

] th5F~h!1h, ~1!

whereF(h) is a functional containing various derivatives
h(x,t), andh(x,t) includes all the fluctuations produced b
interactions among the unresolved microscopic degree
freedom. This noise term clearly influences the dynamic
mesoscopic scales and, therefore, the global propertie
these coarse-grained surfaces, in particular their rough
super-rough nature. In this work, we mainly focus on t
case of white noise of zero average and amplitudeD that is
delta correlated in time as well as in space,

^h~x,t !&50, ^h~x,t !h~x8,t8!&52Ddd~x2x8!d~ t2t8!.

~2!

In Eq. ~2! and below, the symbol̂•••& represents ensembl
averages over different realizations of the noise.

Constraints based on symmetry principles are helpfu
reducing the functionalF(h) to a few standard prescribe
forms, according to the type of growth process it is expec
to model. The KPZ equation@3#, which is among the mos
common ones, reads

] th5n¹2h1
l

2
~¹h!21h, ~3!

wheren andl denote coupling parameters for the linear a
nonlinear terms, respectively. This equation contains, in
dition to a linear diffusion term, a nonlinear term that tak
into account the local growth normal to the interface@1,4#. In
the following, fields are assumed to be periodic of charac
istic lengthL5V1/d with respect to any spatial directions.

A. Finite-difference discretizations

In finite-differences methods, one discretizes space by
fining pointsxj5 jDx ( j being a set ofd integer indices! on a
cubic lattice of elementary sizeDx. In the framework of a
one step Euler time discretization, the KPZ time evoluti
reads

h~xj ,t1Dt !5h~xj ,t !1DtFn¹2h1
l

2
~¹h!2G

xj

1Dth~xj ,t !,

~4!

where one sets
03613
in

,

a

of
at
of
or

n

d

d-
s

r-

e-

h~xj ,t !5A 24D

~Dx!dDt
j~ j ,t !. ~5!

Here the factorj is a noise of zero average and correlatio

^j~ j ,t !j~ j 8,t8!&52d j ,j8d t,t8 , ~6!

and it is taken from a uniform distribution between21/2 and
1/2. The prefactorA24D/(Dx)dDt ensures that the noise ha
a second moment identical to that of the Gaussian noise
tegrated over a time intervalDt @18#. Note that the use of a
uniform distribution makes no difference and speeds up
computation as it is well accepted@12#. In the operators con-
taining spatial derivatives in Eq.~4! one must now introduce
their finite-differences approximations. The Laplacian ope
tor reads

¹2h~x!5
1

Dx2 (
m51

d

@h~x1Dxêm ,t !1h~x2Dxêm ,t !

22h~x,t !#, ~7!

whereêm stands for the basis vector along themth direction.
For the nonlinear term, different possibilities exist that ha
been argued to lead to different results@15,17#. We restrict
ourselves to the two following cases: the standard one,

~¹h!2~x!5
1

4Dx2 (
m51

d

@h~x1Dxêm ,t !2h~x2Dxêm ,t !#,

~8!

henceforth referred to as ST, and the one proposed by L
and Shin@15#, henceforth referred to as LS@19#,

~¹h!2~x!5
1

3Dx2 (
m51

d

$@h~x1Dxêm ,t !2h~x,t !#21@h~x,t !

2h~x2Dxêm ,t !#21@h~x1Dxêm ,t !2h~x,t !#

3@h~x,t !2h~x2Dxêm ,t !#%. ~9!

It is worth noting here that the LS discretization does n
violate a fluctuation-dissipation theorem that is peculiar
the (111) dimensions, unlike the ST discretization@15,17#.

B. Pseudospectral discretization

In spectral discretization, the continuum periodic fie
h(x,t) is first expanded in Fourier modesĥq(t),

h~x,t !5
1

V (
q

ĥq~ t !eiq•x, ~10!

where

ĥq~ t !5E
V
ddxh~x,t !e2 iq•x, ~11!
4-2
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PSEUDOSPECTRAL METHOD FOR THE KARDAR- . . . PHYSICAL REVIEW E 65 036134
andq[(2pn1 /L, . . . ,2pnd /L) is a wave vector defined b
d integersnm , m51, . . . ,d. Similarly, one expands the nois
term h(x,t) and thereafter applies the Fourier transform
the continuum equation~3!. An infinite system of coupled
Langevin equations is thus obtained

dĥq(t)

dt
52nq2ĥq~ t !2

l

2V (
k,k8

~k•k8!ĥk~ t !ĥk8~ t !dk1k8,q

1ĥq~ t !. ~12!

The Fourier modesĥq satisfy, according to Eq.~2!, the cor-
relation:

^ĥq~ t !ĥq8~ t8!&52VDdq,2q8d~ t2t8!. ~13!

The spectral discretization then consists in projecting
infinite system~12! on the vector space of periodic function
of periodL with only a finite number of nonvanishing Fou
rier modes. To be more specific, it is assumed that w
vectorsq, k, andk8 in Eq. ~12! belong to a setS indexed by
integersunmu<N/2 for m51, . . . ,d. In this approximation,
the dynamical equations conserve their original form w
finite sums replacing the original infinite ones. The no
term and the spatial derivatives are discretized in a sim
way. This approach is thus more consistent when compa
to finite differences. Furthermore, it provides exact resu
for the Edward-Wilkinson equation~EW!, which can be read
off from the KPZ equation~3! with l50. In this case the
KPZ equation is reduced to a set of (N11)d uncoupled com-
plex Langevin equations. With our method the regularizat
is performed in Fourier space and its efficiency in reprod
ing the features of the continuum equation should be co
pared to that of finite differences at constant number
Langevin equations. Note that the lattice spacing is such
a5L/N.

The temporal discretization for the above complex eq
tions is performed by an Euler one time step method@20#. In
this case, computation of the linear term as well as the n
is straightforward at each time step. On the other hand,
computation of the nonlinear term

x̂q52
1

2V (
k,q2kPS

@k•~q2k!#ĥk~ t !ĥq2k~ t !, ~14!

which originates from one-half of the square of gradie
¹h(x,t), necessitates more care. We use a pseudospe
algorithm that hinges on the following four steps.

~a! Extension of the momentum space in such a way so
to have M11 modes (M.N) per direction instead ofN
11 modes. The supplementary Fourier modesĥq are simply
set to zero.

~b! Computation, in this extended momentum space,
the spectrum of gradient¹h(x,t) by sheer multiplication
qĥq .

~c! Computation by Fourier transform of¹h(x,t) in real
space at (M11)d collocations pointsxj located on a
d-dimensional hypercubic lattice of elementary sizeL/M .
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This is followed by the straightforward calculation o
1/2@¹h(x,t)#2 at these same collocations points.

~d! By a further Fourier transform of these (M11)d val-
ues of 1/2@¹h(x,t)#2, one gets the correct sumsx̂q for all
wave vectorsqPS if M is sufficiently large. The values
found for external supplementary Fourier modes are sim
discarded.

The entire procedure can be efficiently implemented us
a standard Fast-Fourier package@23#. Without a preventive
extension of the number of Fourier modes for this spec
computation, the exact nonlinear termx̂q would not be ob-
tained for qPS: this is the well-known aliasing problem
@16,24#. The minimum~and hence most efficient! choice for
M turns out to be 3N/2 @16#. The reasons for this are detaile
in Appendix A.

III. SOME RELEVANT QUANTITIES

Kinetically rough surfaces generated by stochastic diff
ential equations such as Eq.~3! generally possess scale in
variant properties. We recall below some characteristic qu
tities in which this behavior becomes manifest as a pow
law, and define the relevant critical exponents.

The correlation between fluctuations of height betwe
any two pointsx, x1r located at distancer, is given by the
height-to-height correlation function

Gn~r ,t !5S 1

VEV
ddx^uh~x,t !2h~x1r ,t !un& D 1/n

, ~15!

wheren is, in general, any real positive number. It is gen
ally assumed thatG2(r ,t) has the scaling form

G2~r ,t !5r xM S t

r zD , ~16!

where the functionM (y) is such that

M ~y!;H const, y→`,

yb, y→0,
~17!

with b[x/z. z is the dynamical exponent andx is the
roughness exponent. Correlations are then of the fo
G2(r );r x in the limit r !t1/z, whereas they follow the
asymptotic limitG2(r ,t);tb for r @t1/z. In the absence of
multiscaling@25,26#, the same asymptotic scaling behavio
should be clearly envisaged for differentn’s. The law ~16!
can be also connected to the scaling of the roughn
W(t,L). This latter quantity, which measures fluctuatio
amplitudes, is defined as

W2~ t,L ![^~h2h̄L!2&, ~18!

whereh̄L denotes the average height over a volumeV5Ld.
For the Family-Vicsek ansatz@27#, such a global scaling
reads
4-3
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LORENZO GIADA, ACHILLE GIACOMETTI, AND MAURICE ROSSI PHYSICAL REVIEW E65 036134
W~ t,L !5LxNS t

LzD , ~19!

where functionN(y) is such thatN(y)→const wheny→`
andN(y);yb wheny→0. The relation betweenW(t,L) and
G2(r ,t) is discussed in Appendix B. The exponents are si
lar to those of Ref.~17!: quantity b is related to the shor
time dynamicsW(t,L);tb and x to the asymptotic satura
tion width, W(t,L);Lx. Moreover, note that the roughne
may be expressed as~see Appendix C!

W2~ t,L !5
1

V (
qÞ0

S~q,t !, ~20!

whereS(q,t) denotes the structure factor

S~q,t !5
1

V
^ĥq~ t !ĥ2q~ t !&. ~21!

In momentum space, one infers the scaling behavior to
~see Appendix C!

S~q,t !5q2(d12x)F~qzt !, ~22!

where the functionF is such that

F~qzt !;H const for qzt@1,

q2xt2x/b for qzt!1.
~23!

ConsequentlyS(q,t);q2(d12x) for large t andS(q,t);t2b

for small t.
In our simulations we computed the skewness param

s, which is the~scaled! third moment of the height fluctua
tions

s~ t !5
^~h2h̄L!3&

^~h2h̄L!2&3/2
. ~24!

As observed by Kruget al. @28# for d51, this parameter is a
good measure of the asymmetry of the distribution of hei
fluctuations.

Finally, we recall that the KPZ equation carries a clo
analogy with turbulence theory. For instance, the equiva
of a Reynolds number for the KPZ equation can be defi
as @29#

e5
Dld

nd11
. ~25!

Moreover, exact heuristic arguments show the existenc
the following two length scales:

l in5S nd13

Dld12D 1/2

, ~26!

l out5S D

l D 1/(d11)

. ~27!
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For a lengthl smaller thanl in , the diffusion linear term is
predominant as in the case of viscous scales observe
turbulent flows. Conversely, the nonlinear term is domin
for length l @ l in , as for the inertial scales in turbulent flow
In fluid dynamics, the outer scale is given by the largest sc
available, which is generally provided by the geometry of t
specific problem. In the KPZ case@29#, it is given by impos-
ing that for scalesl in< l< l out, the surface is rough. Note
that, since the dimensionless numbere is given by

e5S l out

l in
D 2(d11)/(d13)

, ~28!

there exists an equivalent of the inertial range for lar
equivalent Reynolds numberse@1. In this regime, the typi-
cal fluctuation of scalel is of amplitudehl and varies with a
typical time t l given by

hl[ l 2/(d13)S D

l D 1/(d13)

, t l[
l 2

lhl
. ~29!

In the context of the KPZ equation, the inertial range is re
resented by the strong-coupling regime. This correspond
e@1. However, the requirement of the existence of a n
negligible inertial region, that isl out@ l in , yields e f (d)@1
with f (d)5(d13)/2(d11). Since f (d),1 for d.1 then
e f (d) is a slowly increasing function ofe. The above remark
explains the difficulties of the numerical simulations to rea
unambiguous results, due to the long transients that
present in (211) and higher dimensions, as we shall furth
discuss below.

IV. A TEST CASE: „1¿1… DIMENSIONS

We compare the performance of the various method in
(111)-dimensional case. In this instance, the exact value
the steady-state roughness of the continuum equatio
known to be@28#

W~L !5A D

12n
L1/2. ~30!

Such a quantityW(L) has been computed for sizes up toL
51024 and parametersn51, l53, D51, and averaged
over 100 different realizations of the noise and many diff
ent steady-state configurations. We have used~a! the finite-
differences scheme given by Eq.~8! ~ST!, ~b! the finite-
differences scheme given by Eq.~10! ~LS!, and ~c! the
pseudospectral scheme~PS!. For finite-differences we have
set Dx51 corresponding toL5N for the pseudospectra
method. A first comparison is reported in Fig. 1, where t
quantity c(L)5A12n/DLW(L) is plotted for the three
cases. We note that error bars refer to fluctuations within
100 different noise configurations and that the conside
three cases are compared withinidentical statistics.

Unlike the standard discretization, both the pseudosp
tral and the Lam-Shin discretizations yields exact values
the amplitude~dashed line in Fig. 1!, within the error bars.
However, the pseudospectral method yields much sma
4-4
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PSEUDOSPECTRAL METHOD FOR THE KARDAR- . . . PHYSICAL REVIEW E 65 036134
fluctuations compared to the Lam-Shin discretization a
can be inferred by comparing the error bars for LS~dashed
lines! with those of the PS method~solid line!, which are
barely visible in Fig. 1 being of the order of the points siz

As a further support to this result, we compute the tim
evolution of roughness before saturation, which allows
obtain the critical exponentb whose exact value is 1/3. In
this case the roughness is averaged over 50 different con
rations in all cases. Figure 2 depicts the result. The ps
dospectral method follows rather accurately the exact va
of the exponent for at least 3 decades, whereas the

FIG. 1. Quantityc(L)[A12n/DLW(L) in (111) dimensions,
computed as a function of the sizeL. W(L) is the steady-state
roughness as computed using the standard finite-difference dis
zation ~ST! ~with Dx51), the Lam-Shin finite-difference discret
zation ~LS! ~with Dx51), and the pseudospectral discretizatio
~PS! with L5N. All these discretizations have an identical numb
of degrees of freedom. The number of configurations used in
average is also identical in the three cases. The error bars have
distinguished for clarity: gray line for ST, dashed line for LS, so
line ~barely visible! for PS.

FIG. 2. RoughnessW(t,L) in the (111)-dimensional case as
function of time t for l53. Here the lateral size isL51024, the
number of configurations is 50, and ST, LS, and PS stands
standard, Lam-Shin, and pseudospectral discretizations, res
tively. The solid line has a slope corresponding tob50.33.
03613
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method slightly overestimates that value. For the ps
dospectral discretization, we have also computed~not
shown! the roughness exponentx with the two different
methods illustrated in the next section, always finding
excellent agreement with the exact valuex51/2.

V. CASE „2¿1… DIMENSIONS

Let us consider the most physically relevant case, i.e.,
of bidimensional substrated52. For this purpose, results fo
various finite differences discretizations and for the ps
dospectral discretization are provided for sizes up toL
5256 andL5512, respectively. Computations are averag
over a number of configurations typically of the order
50–100. The values ofn andD are both set to 1 throughou
the rest of this section.

A. Finite difference

To the best of our knowledge, no paper has so far con
ered a comparison among various finite differences discr
zations in dimensionsd52. As previously mentioned, we
envisage two relevant finite-differences approximations~ST!
and~LS! of the KPZ equation. In Fig. 3, a comparison of th
roughnessW(t,L) as a function of timet is reported for these
two methods and two values of the nonlinear parameterl
53 and l54.5). From the figure, one can appreciate t
presence of the three regimes~linear regime, KPZ regime
and saturation regime! that are characteristic of any numer
cal solution of the KPZ equation in (211) dimensions when
starting from a flat configuration. Both the above values ol
yield a non-negligible region of KPZ regime. From Eq.~25!,
one hase5l2 and e f (d)5l10/6, which for l53 give e59
ande f (d)56.240 . . . , respectively. For such a moderate no
linearity (l53) the inertial region is already present, and
increases asl increases. However, an instability already n
ticed in previous simulations@12,13# is present for larger
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FIG. 3. RoughnessW(t,L) obtained from a finite-difference
scheme in (211) dimensions, as a function of timet for l
53,4.5. Here the lateral size isL5256, the number of configura
tions is 50, and ST and LS stands for standard and Lam-Shin
cretizations, respectively. The solid line has a slope correspon
to b50.24.
4-5
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LORENZO GIADA, ACHILLE GIACOMETTI, AND MAURICE ROSSI PHYSICAL REVIEW E65 036134
value ofl. The curvature present in thel54.5 case of Fig.
2, stems from this instability, and it is probably associa
with an overestimation of the nonlinearity.

Our results for the critical exponents are in good agr
ment with previous results reported in the literature
finite-difference schemes. A summary of all these result
provided in Table I for completeness@30#.

B. Pseudospectral method

The roughness~20! computed by the pseudospectr
method is depicted in Fig. 4 forL5128, and various value
of l. It has been computed after averaging over many r
izations of noise~typically of the order of 502100). The
value l53 numerically corresponds to the optimal choi
used in previous works@12–14,31,32# in which the strong
coupling regime is well displayed~see Fig. 4!. The power
law for times t<Lz has been reassessed~see Fig. 5! and

TABLE I. Best estimates of critical exponentsb, x, and z in
d52 as reported in the literature. Note that in the numerical so
tion of the continuum equation we have taken the value of
nonlinear coupling parameters corresponding more closely to
one used in our work. Here KPZ stands for continuum KPZ eq
tion with finite-difference discretization, whereas FT stands
field-theoretical methods. The error bars in the simulations are t
cally of the order of the last reported digit.

Model b x z Reference

RSOS 0.245 0.393 1.607 @11#

RSOS 0.240 @10#

KPZ 0.25 0.39 @12#

KPZ 0.240 @13#

KPZ 0.240 0.404 @14#

Flory 0.25 0.4 1.6 @9,29#
FT 0.25 0.4 1.6 @42#

FIG. 4. RoughnessW(t,L) as a function of timet for various
values ofl as obtained from the pseudospectral methods. Here
lateral size isL5128 and the average is over 100 different config
rations. We have schematically indicated the typical three regi
found in the simulations.
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exponentb is evaluated to beb50.22960.05 forl53 and
4.5 (L5512 is the size used to get this result!.

The universal functionN(t/Lz)5W(t/Lz)/Lx is plotted
for l53 in Fig. 6. The exponentsz andx can be estimated
using a recent method devised in Ref.@33#, which allows the
calculation of the two exponents simultaneously with go
accuracy. This method provides a more accurate estimat
the roughness exponentx with respect to the more com
monly used procedure of computing the saturation value
W at different system sizes. We obtainx50.3760.02 and
z51.6760.05.

Two alternative procedures to independently calculate
roughness exponent is based on the computation of
height-height correlation functionG2(r ) and of the structure
factor S(q) at stationarity. Its results are reported in Figs.
and 8. Our best values for the roughness exponentx are x

-
e
e
-
r
i-

e
-
s

FIG. 5. W(t,L) in (211) dimensions, as a function oft when
l54.5 andl53. The lateral size isL5512 and the number o
configurations is 17. The dashed line has a slope correspondin
b50.23.

FIG. 6. Collapse plot of the universal function ofN(t/Lz) when
l53 and various sizesL. The dashed line corresponds tob
50.23. Parameters are identical to Fig. 4. The obtained values
the exponents arex50.3760.02 andz51.6760.05.
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50.3860.02 from the correlation function andx50.40
60.01 from the structure factor. Both these values a
within the error bars, compatible with previous numeric
results on the continuum KPZ equation in real space@12–
14,31,32# and with recent extensive simulations on RSO
models@11#. As explained in Ref.@34#, the computation of
the structure factor yields more reliable results of the ex
nentx with respect to the commonly used procedure of
tracting it from the value of the saturation roughness at v
ous sizes.

Figure 9 depicts the time evolution of skewnesss(t) for
different sizesL. For l.0, the quantitys(t) reaches an
asymptotic value~0.25–0.30! indicating a clear-cut asymme
try as opposed to the EW case (l50). This asymmetry in
(211) is intrinsically different from the one observed fo
short times both on the Kuramoto-Shivashinsky equat
(111) @35# and for the single-step one-dimensional mod
@28#, since in that instance the asymptotic value of the ske
ness should be zero in both cases, due to the Gaussian n
of the probability distribution function. The existence of

FIG. 7. Height-height correlation functionG2(r ) for l53 and
sizesL5128, 512. The dashed line corresponds tox50.4.

FIG. 8. Structure factorS(q) for l53 and sizesL5128, 512.
The dashed line corresponds tox50.4.
03613
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l
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ture

well defined peak fors(t) suggests that this quantity coul
be a better indicator of the onset of the KPZ regime w
respect to the roughness.

It has been suggested@25,26,36#, that possible multiscal-
ing behaviors can be inferred by computing thelocal fluc-
tuationsGn( l ,t) ~whereL/N, l ,L/2, and the extreme cas
in which l equals the lattice spacingL/N corresponds to the
average values of powers of the surface gradient! with re-
spect to time. The reason for this can be traced back to
fine balance between different terms present in the Lange
equation, necessary to get standard scaling. On that b
one does not expect multiscaling in the KPZ equation c
@26#. A direct computation confirms this. First we note th
different moments of the stationary stateGn(r ) depicted in
Fig. 10 have identical scaling. Next we consider the tim
evolution ofGn( l ,t) reported in Fig. 11. This type of calcu
lation has been already performed in Refs.@36# and @25# in
the context of discrete models by considering the fluctuati
of nearest-neighbors points as a function of time. Here c
culations are performed for points located few lattice sp

FIG. 9. Skewnesss(t) for l53 and sizesL ranging fromL
532 to L5512.

FIG. 10. Various moments of the height difference distributi
at stationarityGn(r ) for l53 and sizeL5512. Note that the larg-
est value ofr corresponds toL/2.
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ings away, i.e.,l is included within a circular region 5a< l
<8a @37#. It is apparent that different moments behave in
equal way in agreement with scaling arguments based o
Flory theory@26#.

As a remark, we note that it would be very interesting
compare the above result with an analogous calculation
the Kuramoto-Shivashinsky equation~KS!, since there are
both analytical@38,39# and numerical@35,40,41# evidences
that the~KS! can be mapped, at a coarse grained level, o
a KPZ with a large surface tension couplingn.

VI. CONCLUSIONS

We have presented a comprehensive study of the p
dospectral method applied to the numerical solution of
KPZ equations. The method can be reckoned as an alte
tive and highly reliable procedure to the widely exploit
finite-difference schemes, and its use in the context of
chastic partial differential equation is new. At the price o
moderate increase in the numerical effort, the method of
an improved accuracy in the computation of the critical e
ponents, since it does not suffer of the major drawbacks
are common to all the finite-difference schemes in real sp
The reason for this is that the functional form of the co
tinuum equation is guaranteed to be maintained, the o
approximation made in the calculation being the truncat
to a finite rather than infinite number of modes. We ha
detailed how one can carefully deal with the computation
the nonlinear mode, by using a back and forth transforma
between real and momentum space that is more efficient
a brute force computation of the nonlinear term directly
momentum space. We have shown how finite-differen
schemes lead to nonnegligible differences in the unive
behavior in the temporal region that is accessible to num
cal simulations, and explained why the pseudospec
method is the one that both theoretically and practically m
closely approaches the continuum limit. As a nontrivial a
plication of the method, we have shown, using extens
simulations and comparing various schemes, that the
rently most accepted results for the critical exponentsb and

FIG. 11. Various moments of the height-height correlation fu
tionsGn( l ,t) for a fixedl;6L/N andl53, L5512. The solid line
corresponds tob50.24.
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x in (211) dimensions, as obtained from RSOS simu
tions, are directly accessible. We have also presented di
ent ways of computing the roughness exponentx that yield
rather precise and consistent results.

While our results are confined to the KPZ equation
(111) and (211) dimensions, the method is fully gener
and can be extended to higher dimensions and other no
ear continuum equation of the Langevin class.

We believe that the results presented in this work op
new perspectives in the computation of the universa
classes of nonequilibrium problems by avoiding the unc
trolled use of spatial discretizations from the outset.
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APPENDIX A: THE ALIASING PROBLEM

In this appendix we discuss the necessity of extending
number of Fourier modes to compute the nonlinear ter
~14! at each time step, and explain whyM53N/2 is the
optimal choice for the size of the extended space. For s
plicity, we will treat thed51 case, the extension to highe
dimension being straightforward.

Consider the functionh(x,t) at time t. By definition, it
containsN11 nonvanishing modes~see Fig. 12!

h~x,t !5
1

L (
k52N/2

N/2

ĥqk
~ t ! eiqkx, ~A1!

with qk52pk/L. In dimension d51, one hasS5$qk
52pk/L,N/2<k<N/2% andV5L. The computation of the
gradient]xh(x,t) or its square at any given point, can b
carried out correctly by steps~a!–~c! without any extension
of the momentum space. Instead, step~d! is more delicate
and it does require the momentum space extension. To
derstand this point, let us tackle the following more gene
question. Consider any given periodic function of periodL,

u~x,t !5
1

L (
p52`

`

ûqp
~ t !eiqpx. ~A2!

Assume we want to approximateu(x,t) by a truncated func-
tion utr only containing 2P11 nonvanishing modes

utr~x,t !5
1

L (
p52P

P

ûqp

tr ~ t !eiqpx. ~A3!

Since such a functionutr is completely defined if it is known
for M[2P11 points, we chooseutr by imposing that it
takes the same values asu on M collocation pointsxj
5 jL /M j 50, . . . ,M21. What is the error made on th
Fourier modes or, equivalently, how different areûqp

andûqp

tr

for 2N/2<p<N/2?

-

4-8
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FIG. 12. Illustrating the alias-
ing problem whenM5N11. The
arrow line indicates the mode
used in the computation.~a! the
original field h(x,t); ~b! the true
function 1/2@]xh(x,t)#2; ~c! the
truncated function associated t
1/2@]xh(x,t)#2 whenM5N11.
u
th
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a-
t

re
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For collocation pointsxj5L j /M j 50, . . . ,M21, the
following relation holds:

(
p52`

`

ûqp
~ t !eiqpxj5 (

p52P

P S (
r 52`

`

ûqp1rM D eiqpxj . ~A4!

By identification of Eqs.~A3! and ~A4!, one gets

ûqk

tr ~ t !5 (
r 52`

`

ûqk1rM
, ~A5!

for 2P<k<P. Going back to the momentum space, the tr
spectrum is thus somewhat modified: this is known as
aliasing problem. Note that large wave numbers are, in p
ciple, more affected than small wave numbers.

In the specific case considered, functionu(x,t) equals
1/2@]xh(x,t)#2 and only contains a finite number of nonv
nishing modes: to be precise, the 2N11 modes such tha
qk[2pk/L with k52N, . . . ,N ~see Figs. 12 and 13!. Ob-
serve that we are interested only in the modes withuku
<N/2.

If we use for step~d! a truncated function withM5N
11 modes (P5N/2) to approximate 1/2@]xh(x,t)#2, all the
Fourier componentsĥqk

are modified.

If we use for step~d! a truncated function withM52N
11 modes (P5N) to approximate 1/2@]xh(x,t)#2, all the
nonvanishing Fourier componentsĥqk

(k52N, . . . ,N) are

correct, even those corresponding to spurious modesk5
2N, . . . ,2N/221, k5N/211, . . . ,N. By definition
ĥqk1rM

50 for rÞ0 hence the infinite sum in Eq.~A5! is

reduced to the single termr 50.
03613
e
e
-

If we use for step~d! a truncated function withM
53N/211 modes (P53N/4) to approximate
1/2@]xh(x,t)#2, the Fourier modes of the gradient squa
qp52pp/L are correctly obtained fork52N/2, . . . ,N/2
and spurious modesk52N, . . . ,2N/221, k5N/2
11, . . . ,N are not but this is of no significance. Again b
definition ĥqk1rM

50 for rÞ0 anduku<N/2 hence the infinite

sum in Eq.~A5! is reduced to the single termr 50 for uku
<N/2. As a consequence the choiceM53N/211 (P
53N/4) for step~d! is the more economical.

APPENDIX B: CORRELATION FUNCTION
AND ROUGHNESS

By definition one has

G2
2~r ,t !5

1

VEV
ddx^@h~x1r ,t !2h~x,t !#2&. ~B1!

Expanding this expression and integrating overr one gets

1

VEV
ddrG2

2~r ,t !5W2~ t,L !1
1

V2EV
ddxddr ^h~x,t !h~r ,t !&

1
1

V2EV
ddxddr ^h2~x1r ,t !&

2
2

V2EV
ddxddr ^h~x1r ,t !h~x,t !&. ~B2!

For largeV we thus find
4-9
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FIG. 13. Solving the aliasing
problem with M53/2N11. The
arrow line indicates the consid
ered modes.~a! The original field
h(x,t); ~b! the true function
1/2@]xh(x,t)#2; ~c! the truncated
function associated to
1/2@]xh(x,t)#2 when M53/2N
11.
-

el

he

the
W2~ t,L !5
1

2VEV
ddrG2

2~r ,t !. ~B3!

It is then easy to show that if Eq.~16! and Eq.~17! hold true,
then the above relation implies that Eq.~19! is valid.

APPENDIX C: SCALING OF THE STATIONARY
STRUCTURE FACTOR

Using the Fourier expansion, we get

h~x1r ,t !2h~x,t !5
1

V (
k

ĥk~ t !@eik•(x1r )2eik•x#.

~C1!

By substituting inG2
2(r ,t) one gets after few simple manipu

lations

G2
2~r ,t !5

1

V2 (
k

^ĥk~ t !ĥ2k~ t !&2@12cos~k•r !#. ~C2!

Note that, in the above equation, the termk50 yields a
vanishing contribution to the sum. Eq.~C2! can then be in-
serted in Eq.~B3!, yielding

W2~ t,L !5
1

V2 (
kÞ0

^ĥk~ t !ĥ2k~ t !&. ~C3!

Therefore, since we define the structure factor from the r
tion

^ĥk1
~ t !ĥk2

~ t !&5Vdk1 ,2k2
S~k,t !, ~C4!
03613
a-

we find

W2~ t,L !5
1

V (
kÞ0

S~k,t !. ~C5!

This relation can be checked to be valid directly from t
definition of W2(t,L). On the other hand from Eq.~C2! we
also obtain, using Eq.~C4!,

G2
2~r ,t !5

2

V (
kÞ0

S~k,t !~12eik•r ! ~C6!

or inverting

1

2EV
ddrG2

2~r ,t !e2 ik•r5dk,0S (
k8

S~k8,t !D 2S~k,t !.

~C7!

Therefore, forkÞ0 one gets

S~k,t !52
1

2EV
ddxG2

2~r ,t !e2 ik•r. ~C8!

If we then assume that

G2
2~r ,t !5r 2 xgS t

r zD , ~C9!

and using the standard angular integral over
d-dimensional angular variables
4-10
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E dVde2 ikr cos(k̂• r̂ )5~2p!d/2
Jd/221~kr !

~kr !d/221
, ~C10!

one easily gets

S~k,t !5k(d12x)F~kzt !, ~C11!

where
d

tt

ng
vin
eu
o-
in

03613
F~kzt !52
1

2
~2p!d/2E

0

kL

dll2x1d/2gS kzt

lz D Jd/221~l!.

~C12!

It is then immediate to see that

F~kzt !;H const for kzt@1,

k2xt2x/b for kzt!1.
~C13!
c

t

d,

ev.
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