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We discuss a numerical scheme to solve the continuum Kardar-Parisi-Zhang equation in generic spatial
dimensions. It is based on a momentum-space discretization of the continuum equation and on a pseudospectral
approximation of the nonlinear term. The method is tested in{} and (2+ 1) dimensions, where it is shown
to reproduce the current most reliable estimates of the critical exponents based on restricted solid-on-solid
simulations. In particular, it allows the computations of various correlation and structure functions with high
degree of numerical accuracy. Some deficiencies that are common to all previously used finite-difference
schemes are pointed out and the usefulness of the present approach in this respect is discussed.
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[. INTRODUCTION belongs to the universality class of the continuum equation,
albeit there is a general belief in this sense. Moreover, the
Surface growth is a paradigmatic problem of nonequilib-corresponding coupling parameters possess fixed values in
rium statistical mechanics with widespread potential applicathe RSOS case, a feature that prevents the exploration of the
tions such as molecular beam epitaxy, fluid flow in porousentire phase diagram of the KPZ equation.
media or flame front§l,2]. Given these premises, numerical integration appears as
For such extended systems, it is a rather intricate questiothe most direct and definite way to determine the universality
how to connect, in a direct way, microscopic interactions toclass of a given continuum equation. So far, finite-differences
the dynamics at mesoscopic or coarse-grained scales. Pheethods have been exploited in the context of the KPZ equa-
nomenological models, based on stochastic partial differention [12—14. In this framework, Lam and Shifl5] have
tial equations, selected according to symmetry principles andhown the jeopardy of selecting an incorrect discretization in
conservation laws, are often capable to reproduce variouthe framework of finite-differences algorithms. In this work,
experimental data. The most well known of these models isve follow a different route and propose a numerical scheme
the one introduced by Kardar, Parisi, and Zhak&2) [3]. based on a pseudospectral representation.
The equation introduced by these authors engendered an Spectral methods, although almost routinely employed in
enormous amount of work that addressed the large numbdiuid mechanicg§16], have not, so far, been used in the con-
of issues related to {t4]. Yet, many fundamental properties text of stochastic equations except in Rdf7]. In this latter
of the KPZ equation are still not well understood. Usingwork, two of us have introduced in the simple{1) case, a
renormalization group(RG) theory, various authors at- discretization algorithm based on a pseudospectral scheme
tempted to estimate critical exponents and the upper criticahat outperforms classical finite differences on various re-
dimension[5—8|. The success of this procedure has beerspects. The present work generalizes the spectral method to
limited, so far, by the difficulties of RG techniques to reachthe nontrivial (2+1) case, where no exact results are avail-
the strong-coupling regime. An alternative route to study stoable and where finite-differences methods may be hampered
chastic partial differential equations, which yields an easyby large discretization effects, as we will shortly discuss.
and reliable access to critical exponents, hinges on the s&xtended numerical simulations for the{24) case, are then
called restricted solid-on-solidRSOS growth models reported, along with comparisons with results based on
[9-11]. This approach is based on simple rules for depositiorfinite-differences schemes. The absence of uncontrolled dis-
and diffusion of particles on a discrete lattice, and it can becretization effects also allow us to compute various correla-
implemented in a very efficient and fast way on a computertion functions and critical exponents in a rather precise and
However, there is na priori guarantee that a RSOS model reliable way. Particularly interesting is the computation of
various height-height correlation functions and of the struc-
ture factor, which were not previously calculated.
*Present address: MPIKG Golm, D-14424 Potsdam, Germany. The plan of the remaining of the paper is as follows. In

Electronic address: giada@mpikg-golm.mpg.de Sec. ll, we address the general features of finite-differences
TAuthor to whom correspondence should be addressed. Electronitiscretizations and introduce the new pseudospectral proce-
mail address: achille@unive.it dure. Section Il contains definitions of the various quantities
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employed in this work as well as their pertinent scaling 24D
forms. Results are presented in Sec. IV for ther(l) di- n(x; )= ———&(j,b). (5)
mensional and in Sec. V for the ¢21)-dimensional cases, (Ax)7At

respectively. Conclusions and perspectives are included in _ _ _
Sec. VI. Here the factog is a noise of zero average and correlation

II. THE DISCRETIZED KPZ EQUATION (EG.DEG"U))=26 0 (6)

We consider al-dimensional substrate and denote with and it is taken from a uniform distribution betweeri/2 and
the d-dimensional vector locating a point on it. The surface,1/2. The prefactok/24D/(Ax)%At ensures that the noise has
which grows on this substrate, is described at each tilme  a second moment identical to that of the Gaussian noise in-
its height h(x,t). In the continuum approximation, which tegrated over a time intervdit [18]. Note that the use of a
disregards overhangs, this dynamics generically satisfies aniform distribution makes no difference and speeds up the
stochastic partial differential equation computation as it is well acceptéd2]. In the operators con-
taining spatial derivatives in Eg¢4) one must now introduce
gth=F(h)+ 7, (1) their finite-differences approximations. The Laplacian opera-

where F(h) is a functional containing various derivatives of tor reads

h(x,t), and (x,t) includes all the fluctuations produced by ;1

interactions among the unresolved microscopic degrees of Vzh(x)—— E [h(x+Axe t)+h(x—Axéﬂ,t)
freedom. This noise term clearly influences the dynamics at

mesoscopic scales and, therefore, the global properties of

these coarse-grained surfaces, in particular their rough or —2h(x,1)], @)
super-rough nature. In this work, we mainly focus on the N

case of white noise of zero average and amplitDddat is wheree,, stands for the basis vector along thth direction.

delta correlated in time as well as in space, For the nonlinear term, different possibilities exist that have
been argued to lead to different resyli$,17. We restrict
(n(x,0)=0, (n(x,t)n(x",t"))=2D&%x—x")d(t—t"). ourselves to the two following cases: the standard one,
2

In Eq. (2) and below, the symbd]- - - ) represents ensemble (Vh)2(x)=
averages over different realizations of the noise.

Constraints based on symmetry principles are helpful in (8)
reducing the functionalF(h) to a few standard prescribed
forms, according to the type of growth process it is expectedienceforth referred to as ST, and the one proposed by Lam
to model. The KPZ equatiof8], which is among the most and Shin[15], henceforth referred to as L39],
common ones, reads

e, ,t)—h(x—Axe, 1],

(Vh)2(x)= ! e, .t)—h(x,t)]1>+[h(xt)
3AX? 4= " ’ ’

A
h=vV2h+ E(Vh)2+ 7, ©)

— — AXE 2 P —
wherev and\ denote coupling parameters for the linear and h(x—Axe,, D]+ [h(x+Axe, ) =h(x.1)]
nonlinear terms, respectively. This equation contains, in ad- STh(x.t)—h(x— Axe 9
dition to a linear diffusion term, a nonlinear term that takes [h(xt)—h(x=Ax - ©)

'?}to facl:lcount tr;e llgcal growth noamalgo the m(tjerf@?:eﬂ;]] IN" It is worth noting here that the LS discretization does not
the following, fields are assumed to be periodic of charactery;qate a fluctuation-dissipation theorem that is peculiar of

1d
istic lengthL =V~ with respect to any spatial directions. the (1+1) dimensions, unlike the ST discretizatiftb,17.

A. Finite-difference discretizations . L
B. Pseudospectral discretization

In finite-differences methods, one discretizes space by de- . o . L
- . T L X L In spectral discretization, the continuum periodic field
fining pointsx;=jAx (j being a set ofl integer indiceson a o ) , A
cubic lattice of elementary siz&x. In the framework of a N(xt) is first expanded in Fourier modég(t),
one step Euler time discretization, the KPZ time evolution

reads h(x,t)= % > hy(He, (10)
q

A
h(x;,t+At)=h(x;,t)+ At vV2h+ E(Vh)2

tAtg(X, 0, where

%
4

ﬁq(t)=f d9%h(x,t)e 14X (11)
where one sets \%
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andg=(2wn,/L, ...,2mn4/L) is a wave vector defined by This is followed by the straightforward calculation of
dintegersn,, u=1, ... d. Similarly, one expands the noise 1/ Vh(x,t)]? at these same collocations points.
term 5(x,t) and thereafter applies the Fourier transform to  (d) By a further Fourier transform of thes#(+ 1) val-

the continuum equatiof3). An infinite system of coupled yes of 1/2Vh(x,t)]?, one gets the correct suni@ for all

Langevin equations is thus obtained wave vectorsqe S if M is sufficiently large. The values
. found for external supplementary Fourier modes are simply
- A aa discarded.
q(t) _ _ 2 - !
a hq(t) 2V g (k-k)hi(Ohie (1) S g The entire procedure can be efficiently implemented using
’ a standard Fast-Fourier packa@s]. Without a preventive
+ §7q(t)_ (12)  extension of the number of Fourier modes for this specific

. computation, the exact nonlinear telfm would not be ob-
The Fourier modesy, satisfy, according to Eq2), the cor-  tained forqe S: this is the well-known aliasing problem
relation: [16,24). The minimum(and hence most efficienthoice for
M turns out to be BI/2[16]. The reasons for this are detailed
(7q(1) Mg (1))=2VD &, _ o S(t—1"). (13)  in Appendix A.

The spectral discretization then consists in projecting the
infinite system(12) on the vector space of periodic functions
of periodL with only a finite number of nonvanishing Fou- Kinetically rough surfaces generated by stochastic differ-
rier modes. To be more specific, it is assumed that wavential equations such as E@) generally possess scale in-
vectorsq, k, andk’ in Eq.(12) belong to a sef indexed by  variant properties. We recall below some characteristic quan-
integers|n,|<N/2 for =1, ... d. In this approximation, tities in which this behavior becomes manifest as a power
the dynamical equations conserve their original form withlaw, and define the relevant critical exponents.
finite sums replacing the original infinite ones. The noise The correlation between fluctuations of height between
term and the spatial derivatives are discretized in a similaany two pointsx, x+r located at distancg is given by the
way. This approach is thus more consistent when comparelkeight-to-height correlation function
to finite differences. Furthermore, it provides exact results
for the Edward-Wilkinson equatiofEW), which can be read 1 n
off from the KPZ equation3) with A=0. In this case the Gn(f't)=<vf ddx<|h(x,t)—h(x+r,t)|”>> , (19
KPZ equation is reduced to a set &f ¢ 1) uncoupled com- v
plex Langevin equations. With our method the regularization . . .
is performed in Fourier space and its efficiency in reproduc-Wheren is, in general, any real p03|t|ye number. It is gener-
ing the features of the continuum equation should be com@lly @ssumed thaB,(r,t) has the scaling form
pared to that of finite differences at constant number of

IIl. SOME RELEVANT QUANTITIES

Langevin equations. Note that the lattice spacing is such that t
a=L/N. Ga(r,t)y=r*™M| — |, (16)
The temporal discretization for the above complex equa-
tions is performed by an Euler_one time step metf2. In _where the functiorM (y) is such that
this case, computation of the linear term as well as the noise
is straightforward at each time step. On the other hand, the
computation of the nonlinear term _ const, y—,
M(y)~{ (17
y?,  y—=0,
oot > [k K)]he(H)h 14
Xq__ﬁk,q,keg[ (@I Ohg (1), QD B=xlz. z is the dynamical exponent ang is the

roughness exponent. Correlations are then of the form
which originates from one-half of the square of gradientG,(r)~r¥ in the limit r<t*? whereas they follow the
Vh(x,t), necessitates more care. We use a pseudospect@symptotic limitG(r,t)~t? for r>t'2. In the absence of
algorithm that hinges on the following four steps. multiscaling[25,26], the same asymptotic scaling behaviors
(a) Extension of the momentum space in such a way so ashould be clearly envisaged for differen®. The law (16)
to haveM +1 modes M>N) per direction instead oN can be also connected to the scaling of the roughness
+1 modes. The supplementary Fourier mofj@me simply ~ W(t,L). This latter quantity, which measures fluctuations

set to zero. amplitudes, is defined as

(b) Computation, in this extended momentum space, of o
the spectrum of gradienVh(x,t) by sheer multiplication W2(t,L)={(h—h)?), (18)
qhy.

(c) Computation by Fourier transform &fh(x,t) in real whereﬁ denotes the average height over a voluvheL .
space at l+1)¢ collocations pointsx; located on a For the Family-Vicsek ansat27], such a global scaling
d-dimensional hypercubic lattice of elementary sizéV. reads

036134-3



LORENZO GIADA, ACHILLE GIACOMETTI, AND MAURICE ROSSI PHYSICAL REVIEW E65 036134

For a lengthl smaller thanl;,, the diffusion linear term is
, (19 predominant as in the case of viscous scales observed in
turbulent flows. Conversely, the nonlinear term is dominant
, ) for lengthl>1,,, as for the inertial scales in turbulent flows.
where functg)nN(y) is such thaiN(y)—const whery—< 1, iq dynamics, the outer scale is given by the largest scale
andN(y) ~y” wheny—0. The relation betweeW(t,L) and 4y ailable, which is generally provided by the geometry of the
G,(r,t) is discussed in Append_lx B._The exponents are SIMispecific problem. In the KPZ ca$@9), it is given by impos-
lar to those of Ref(17): quantity 8 is related to the short ing that for scaled,,<I<l,,, the surface is rough. Note

time dynamicsw(t,L)~t# and y to the asymptotic satura- that, since the dimensionless numleeis given by
tion width, W(t,L)~LX. Moreover, note that the roughness

may be expressed @see Appendix €

W(t,L)=L*N

Lz

IOUt

2(d+1)/(d+3)
- )

: (28)
) 1 E Iin
WA(t,L)== ), 20
tH V 470 Sa.t) 29 there exists an equivalent of the inertial range for large
equivalent Reynolds numbees>1. In this regime, the typi-
whereS(q,t) denotes the structure factor cal fluctuation of scaléis of amplitudeh, and varies with a

typical timet, given by

1 . "
5(q,t):v<hq(t)h—q(t)>- (21 D L(d+3) 2
h|5|2/(d+3)(x) , 4= ho (29
In momentum space, one infers the scaling behavior to be !
(see Appendix € In the context of the KPZ equation, the inertial range is rep-
_ o (d+2y) , resented by the strong-coupling regime. This corresponds to
S(a.H=q He(a), (22 e>1. However, the requirement of the existence of a non-

negligible inertial region, that i$y,1;,, yields e@>1
with f(d)=(d+3)/2(d+1). Sincef(d)<1 for d>1 then
const  for g?t>1, €'@ is a slowly increasing function of. The above remark

where the functionP is such that

d(g*t)~ 2x(2x/B 2< (23 explains the difficulties of the numerical simulations to reach
q=t or gt<1. unambiguous results, due to the long transients that are
Consequenths(q,t)~q~@*2Y for larget and S(q,t) 2 present in (2-1) and higher dimensions, as we shall further
discuss below.
for smallt.
In our simulations we computed the skewness parameter
s, which is the(scaled third moment of the height fluctua- IV.ATEST CASE: (1+1) DIMENSIONS
tions We compare the performance of the various method in the
— .3 (1+1)-dimensional case. In this instance, the exact value for
(t) = ((h—hy)*) (24) the steady-state roughness of the continuum equation is

((h—h,)?)%2 known to be[28]

As observed by Kru@t al.[28] for d=1, this parameter is a B /D 12
good measure of the asymmetry of the distribution of height W(L)= 1_2,,L :

fluctuations.

Finally, we recall that the KPZ equation carries a closeSuych a quantityV(L) has been computed for sizes uplto
analogy with turbulence theory. For instance, the equivalent 1024 and parameters=1, A=3, D=1, and averaged
of a Reynolds number for the KPZ equation can be define@yver 100 different realizations of the noise and many differ-

(30

as[29] ent steady-state configurations. We have usgdhe finite-
differences scheme given by E@) (ST), (b) the finite-
_ DAY differences scheme given by E¢LO) (LS), and (c) the

€= LA+ (25) pseudospectral schentBS. For finite-differences we have

set Ax=1 corresponding td=N for the pseudospectral
Moreover, exact heuristic arguments show the existence dhethod. A first comparison is reported in Fig. 1, where the

the following two length scales: quantity ¢(L)=\12v/DLW(L) is plotted for the three
cases. We note that error bars refer to fluctuations within the
pd+3 |12 100 different noise configurations and that the considered
lin= m) , (26) three cases are compared witlidkentical statistics.
DA Unlike the standard discretization, both the pseudospec-

YA+ 1) tral and the Lam-Shin discretizations yields exact values for
|- E 27) the amplitude(dashed line in Fig. 1 within the error bars.
out i\ ' However, the pseudospectral method yields much smaller

036134-4



PSEUDOSPECTRAL METHOD FOR THE KARDAR .. PHYSICAL REVIEW E 65036134

— —
- =)

(L)
W(t.L)

=
o0

e
o

o '""|';'»'<"N'$"""|"':"|"'"|""'_
'*E“* j
e
i

0005 00l '0.015 002 10" - M - n - N Lo Lo s
10 10 10 100 10 10
/L ¢
FIG. 1. Quantity)(L)=y12»/DLW(L) in (1+1) dimensions, FIG. 3. RoughnesaV(t,L) obtained from a finite-difference

computed as a function of the size W(L) is the steady-state gcpeme in (2-1) dimensions, as a function of time for A
roughness as computed using the standard finite-difference discreti-5 4 5. Here the lateral size Is= 256, the number of configura-
zation(ST) (with Ax=1), the Lam-Shin finite-difference discreti- {jons js 50, and ST and LS stands for standard and Lam-Shin dis-

zation (LS) (with Ax=1), and the pseudospectral discretizations cretizations, respectively. The solid line has a slope corresponding
(P9 with L=N. All these discretizations have an identical numbert0 B=0.24.

of degrees of freedom. The number of configurations used in the

average is also identical in the three cases. The error bars have beg{Linoq slightly overestimates that value. For the pseu-
distinguished for clarity: gray line for ST, dashed line for LS, solid dospectral discretization, we have alsol compui@bt
line (barely visiblg for PS. shown the roughness exponent with the two different

. L o _methods illustrated in the next section, always finding an
fluctuations compared to the Lam-Shin discretization as bxcellent agreement with the exact valye 1/2.

can be inferred by comparing the error bars for (dashed
lines with those of the PS methog@olid line), which are
barely visible in Fig. 1 being of the order of the points size. V. CASE (2+1) DIMENSIONS

As a further support to this result, we compute the time | et us consider the most physically relevant case, i.e., that
evolution of roughness before saturation, which allows touf pidimensional substrati= 2. For this purpose, results for
obtain the critical exponeng whose exact value is 1/3. In yarious finite differences discretizations and for the pseu-
th|S case the roughneSS iS aVeraged over 50 diﬁerent Conﬁg%spectra| discretization are provided for Sizes up Lto
rations in all cases. Figure 2 depicts the result. The pseu= 256 andL =512, respectively. Computations are averaged
dospectral method follows rather accurately the exact valugyer a number of configurations typically of the order of
of the exponent for at least 3 decades, whereas the L§g_100. The values of andD are both set to 1 throughout

the rest of this section.

10% ——rrr T T T

A. Finite difference

To the best of our knowledge, no paper has so far consid-
ered a comparison among various finite differences discreti-
zations in dimensionsl=2. As previously mentioned, we
envisage two relevant finite-differences approximati(sit)
and(LS) of the KPZ equation. In Fig. 3, a comparison of the
roughnesdV(t,L) as a function of time is reported for these
two methods and two values of the nonlinear parameter (
=3 and\=4.5). From the figure, one can appreciate the
presence of the three regimémear regime, KPZ regime,
and saturation regimehat are characteristic of any numeri-
cal solution of the KPZ equation in (21) dimensions when
starting from a flat configuration. Both the above value& of
yield a non-negligible region of KPZ regime. From ER5),

FIG. 2. Roughnes¥/(t,L) in the (1+ 1)-dimensional case as a Oné hase=\? and e'@=\19 which for \=3 give =9
function of timet for A=3. Here the lateral size is=1024, the ande'@=6.220 . . ., respectively. For such a moderate non-
number of configurations is 50, and ST, LS, and PS stands folinearity (A =3) the inertial region is already present, and it
standard, Lam-Shin, and pseudospectral discretizations, respeificreases as increases. However, an instability already no-
tively. The solid line has a slope correspondingsts 0.33. ticed in previous simulation§12,13 is present for larger

W(t,L)
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TABLE I. Best estimates of critical exponen x, andz in 10—
d=2 as reported in the literature. Note that in the numerical solu- C
tion of the continuum equation we have taken the value of the
nonlinear coupling parameters corresponding more closely to the
one used in our work. Here KPZ stands for continuum KPZ equa-
tion with finite-difference discretization, whereas FT stands for
field-theoretical methods. The error bars in the simulations are typi-
cally of the order of the last reported digit.

Model B X z Reference " s A=45
N — B=023

RSOS 0.245 0.393 1.607 [17] L
RSOS 0.240 [10]
KPZ 0.25 0.39 [12]
KPZ 0.240 [13] ol 0l el annl 0 nn

10 0 1 2 3 4
KPZ 0.240 0.404 [14] 10 10 1? 10 10
Flory 0.25 0.4 1.6 [9,29]
FT 0.25 0.4 1.6 [42] FIG. 5. W(t,L) in (2+1) dimensions, as a function tfwhen

A=4.5 and\=3. The lateral size i =512 and the number of
configurations is 17. The dashed line has a slope corresponding to
value of\. The curvature present in the=4.5 case of Fig. 8=0.23.
2, stems from this instability, and it is probably associated
with an overestimation of the nonlinearity. exponents is evaluated to b@=0.229+0.05 forA=3 and

Our results for the critical exponents are in good agree4 5 (L=512 is the size used to get this regult
ment with previous results reported in the literature for The universal functiorN(t/L%)=W(t/L?)/L* is plotted
finite-difference schemes. A summary of all these results igor \ =3 in Fig. 6. The exponentsand y can be estimated

provided in Table | for completene$30]. using a recent method devised in R&3], which allows the
calculation of the two exponents simultaneously with good
B. Pseudospectral method accuracy. This method provides a more accurate estimate of

The roughness(20) computed by the pseudospectral the roughness exponent with respect to the more com-
method is depicted in Fig. 4 fdr=128, and various values Monly used procedure of computing the saturation value of
of \. It has been computed after averaging over many real?V @t different system sizes. We obtajn=0.37=0.02 and
izations of noise(typically of the order of 56-100). The 2~ 1.67x0.05. ) )
value \=3 numerically corresponds to the optimal choice Two alternative proc_edures to independently cal_culate the
used in previous work§12—14,31,32in which the strong oughness exponent is based on the computation of the
coupling regime is well displayetsee Fig. 4 The power height-height correlation functio®,(r) and of the structure

law for timest<L? has been reassess&ee Fig. 5 and factor S(q) at stationarity. Its results are reported in Figs. 7
and 8. Our best values for the roughness exponeate y

10 p—r—rrrrmm T —r—rrrr

10° e

Linear regime

—~
~
: N’-\
= . ] T o'k =
« e A=0(EW) ST :
[ ] =2
(o] — +— L=16
E * A=3 ] a—a 1232
4 =4 . — 64
<4 A=45 ] =—=a =128
—_ B=0_24 i —e L=512
i —- B=0.23
| S PR PR .
10 10 10’ 10 10-2 EEENETT BRI B R TITT SR W RETT ENET A RET1T B SR
t 10° 10* 10® 102 10" 10° 10

L’
FIG. 4. Roughnes®V(t,L) as a function of time for various

values of\ as obtained from the pseudospectral methods. Here the FIG. 6. Collapse plot of the universal function ft/L*) when
lateral size id. =128 and the average is over 100 different configu-A=3 and various sized. The dashed line corresponds ®
rations. We have schematically indicated the typical three regimes-0.23. Parameters are identical to Fig. 4. The obtained values for
found in the simulations. the exponents arg=0.37+0.02 andz=1.67+0.05.
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102 T T T T T T T T T T T T TTT 0.5 LR T T T T T T

S =
S = |
r e - L-128 i -
10E 4" S A |
4 ]
-1 il | L1
e 10’ 10° 10° 10*
r
FIG. 7. Height-height correlation functio®,(r) for \=3 and FIG. 9. Skewness(t) for \=3 and sized. ranging fromL
sizesL =128, 512. The dashed line correspondyte0.4. =32toL=>512.

well defined peak fois(t) suggests that this quantity could
be a better indicator of the onset of the KPZ regime with
tespect to the roughness.

It has been suggesté¢#d5,26,38, that possible multiscal-
ing behaviors can be inferred by computing tbeal fluc-

=0.38+0.02 from the correlation function ang=0.40
+0.01 from the structure factor. Both these values are
within the error bars, compatible with previous numerical
results on the continuum KPZ equation in real sppt2-

14,31,32 and with recent extensive simulations on RSOS, * ..
T : . . tuationsG,(l,t) (whereL/N<I<L/2, and the extreme case
models[11]. As explained in Ref|34], the computation of in which | equals the lattice spaciig N corresponds to the

T et o s rocosre o o Vefage alues of poersof e srfce gradet r-
tractiﬁ it from [t)he value of the satu)r/ation rcljou hness at vari—S pect to time. The reason for this can be traced back to the
ous siges 9 fine balance between different terms present in the Langevin

] . . . equation, necessary to get standard scaling. On that basis,
Figure 9 depicts the time evolution of skewnegs) for ST :
. - . t t It I the KPZ t
different sizesL. For A>0, the quantitys(t) reaches an one does not expect multiscaling in the equation case

asymptotic valu€0.25-0.30 indicating a clear-cut asymme- [26]. A direct computation confirms this. First we note that
iry as opposed to the EW cask£0). This asymmetry in different moments of the stationary sta®g(r) depicted in

AN ) Fig. 10 have identical scaling. Next we consider the time
(2+1) is intrinsically different from the one observed for evolution ofG(I.t) reported in Fig. 11. This type of calcu-

short times both on the Kuramoto-Shivashinsky equatioq ; : -

. ; . ation has been already performed in RéB6] and[25] in
(;;1). [35]. a{]hd :‘qr tthe smtgglle-step opi.—dm(lansmfntahl midmthe context of discrete models by considering the fluctuations
[28], since in that instance the asymptotic value of the s EWot nearest-neighbors points as a function of time. Here cal-

ness should be zero in both cases, due to the Gaussian natté{ﬁ . . .
o S ' ’ ations are performed for points located few lattice spac-
of the probability distribution function. The existence of a P P P

1

10

10" ——T —T—TT Ty

S(q)

L —eon=2
—an=3
—en=4

10’ 10° 10°
r

E -1
E 10
Ll | e 10°

FIG. 10. Various moments of the height difference distribution
FIG. 8. Structure factoB(q) for A\=3 and sized =128, 512.  at stationarityG,(r) for A\=3 and sizeL=512. Note that the larg-
The dashed line corresponds je-0.4. est value ofr corresponds td./2.
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10! e x in (2+1) dimensions, as obtained from RSOS simula-

E tions, are directly accessible. We have also presented differ-
ent ways of computing the roughness exponeithat yield
rather precise and consistent results.

While our results are confined to the KPZ equation in

(1+1) and (2+1) dimensions, the method is fully general
and can be extended to higher dimensions and other nonlin-
ear continuum equation of the Langevin class.
*—e n=1 We believe that the results presented in this work open
new perspectives in the computation of the universality
classes of nonequilibrium problems by avoiding the uncon-
trolled use of spatial discretizations from the outset.

10°F

Ll

Gn(l,t)

10°F +— n=3

>

[

A
Ll
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ings away, i.e.] is included within a circular region &<l
<8a [37]. It is apparent that different moments behave in an
equal way in agreement with scaling arguments based on a In this appendix we discuss the necessity of extending the
Flory theory[26]. number of Fourier modes to compute the nonlinear terms
As a remark, we note that it would be very interesting to(14) at each time step, and explain wiW=3N/2 is the
compare the above result with an analogous calculation foptimal choice for the size of the extended space. For sim-
the Kuramoto-Shivashinsky equati¢KS), since there are piicity, we will treat thed=1 case, the extension to higher
both analytical[38,39 and numerica[35,40,4] evidences dimension being straightforward.
that the(KS) can be mapped, at a coarse grained level, onto Consider the functiom(x,t) at timet. By definition, it

APPENDIX A: THE ALIASING PROBLEM

a KPZ with a large surface tension coupling containsN+ 1 nonvanishing modesee Fig. 12
VI. CONCLUSIONS N2 _
h(x)== > g (t) e, (A1)
We have presented a comprehensive study of the pseu- L k==Nr2

dospectral method applied to the numerical solution of the ) )
KPZ equations. The method can be reckoned as an alternith dx=27k/L. In dimensiond=1, one hasS={qy

tive and highly reliable procedure to the widely exploited =27k/L,N/2<k<N/2} andV=L. The computation of the
finite-difference schemes, and its use in the context of stodradientdh(x,t) or its square at any given point, can be
chastic partial differential equation is new. At the price of acarried out correctly by stedg)—(c) without any extension
moderate increase in the numerical effort, the method offer§f the momentum space. Instead, stelpis more delicate

an improved accuracy in the computation of the critical ex-2nd it does require the momentum space extension. To un-
ponents, since it does not suffer of the major drawbacks tha#erstand this point, let us tackle the following more general
are common to all the finite-difference schemes in real spacéluestion. Consider any given periodic function of period

The reason for this is that the functional form of the con-
tinuum equation is guaranteed to be maintained, the only
approximation made in the calculation being the truncation
to a finite rather than infinite number of modes. We have
detailed how one can carefully deal with the computation ofAssume we want to approximatgx,t) by a truncated func-
the nonlinear mode, by using a back and forth transformatiofion u'" only containing 2+ 1 nonvanishing modes
between real and momentum space that is more efficient than
a brute force computation of the nonlinear term directly in . ,
momentum space. We have shown how finite-difference u ()= - PINTGERTS (A3)
schemes lead to nonnegligible differences in the universal p=—P P

behavior in the temporal region that is accessible to numergi;E

©

u(x,t)= % p;m g, (t)e'%*. (A2)

P

ince such a function'" is completely defined if it is known

cal simulations, and explained why the pseudospectr or M=2P+1 points, we choose!" by imposing that it

method is the one that both theorethall_y and practlcgl!y MOS] os the same values ason M collocation pointsx,
closely approaches the continuum limit. As a nontrivial ap- . o .

e . -~ =jL/M j=0,... M—1. What is the error made on the
plication of the method, we have shown, using extensive i . : ~ i
simulations and comparing various schemes, that the cuf-ourier modes or, equivalently, how different arg andug_
rently most accepted results for the critical exponghisnd  for —N/2<p=<N/2?
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(@)

N/2

-N -3N/4 -

||| [h.

3N/ 4 N

FIG. 12. lllustrating the alias-
ing problem wherM =N+1. The
arrow line indicates the modes
used in the computation(a) the
original field h(x,t); (b) the true

-3N/4

(b) function 1/Za.n(x,t)1% (c) the
truncated function associated to

UV ah(x,t)]12 whenM=N+1.

3N/4

-N -3N/4

For collocation pointsx; =
following relation holds:

Li/M j=0,

12

By identification of Eqs(A3) and (A4), one gets

.M—1, the

o P

> aqp(t)eiqpxj= >

qu+rM) el (Ad)

~tr _ N
qu(t) - z uqk+rM’

r=—o

(A5)

for — P<k=<P. Going back to the momentum space, the true
spectrum is thus somewhat modified: this is known as the
aliasing problem. Note that large wave numbers are, in prin-

ciple, more affected than small wave numbers.

In the specific case considered, functiafx,t) equals
1/ a,h(x,t)]?> and only contains a finite number of nonva-
nishing modes: to be precise, th&2 1 modes such that

gx=2wk/L with k=—N, ... N (see Figs. 12 and 130b-
serve that we are interested only in the modes Wkh
=<N/2.

If we use for step(d) a truncated function wittM =N
+1 modes P=N/2) to approximate 1[&,h(x,t)]?, all the
Fourier componentﬁqk are modified.

If we use for step(d) a truncated function witiM =2N
+1 modes P=N) to approximate 1[2,h(x,t)]?, all the
nonvanishing Fourier componerﬁlgk (k=—N ..N) are

correct, even those corresponding to spurious mddes

=N, ...,—N/2—1, k=N/2+1,...N. By definition
ﬁquM:O for r#0 hence the infinite sum in EqA5S) is
reduced to the single term=0.

©
3N/4

If we use for step(d) a truncated function withM
=3N/2+1 modes  P=3N/4) to  approximate
1/2[ a,h(x,t)]?, the Fourier modes of the gradient square
gp=2mp/L are correctly obtained fok=—N/2,... N/2
and spurious modesk=—N, ...,—N/2—1, k=N/2
+1,... N are not but this is of no significance. Again by
definitionﬁquM:O forr # 0 and|k|<N/2 hence the infinite

sum in Eq.(A5) is reduced to the single term=0 for [K|
<N/2. As a consequence the choidd=3N/2+1 (P
=3N/4) for step(d) is the more economical.

APPENDIX B: CORRELATION FUNCTION
AND ROUGHNESS

By definition one has

2 1( 2
Gz(r,t)zv d%([h(x+r,t)—h(x,t)]%). (B1)
\%
Expanding this expression and integrating ove@me gets
1 de 2 2 1 dyqd
—f drG5(r,t)=W (t,L)+—f dxd®r{h(x,t)h(r,t))
Vv VvZJv

1
+ — | d%d9r(h%(x+r,t
= (o)

2
_ dyqd
szvd xd®r(h(x+r,t)h(x,t)). (B2)

For largeV we thus find
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N2

(@)
N -3N/4 -N2 3N/4 N
- =
FIG. 13. Solving the aliasing
__________________ problem with M=3/2N+1. The
arrow line indicates the consid-
ered modes(a) The original field
’ ’ ‘ ‘ ‘ ‘ h(x,t); (b) the true function
l I | ’ | ‘ ‘ | | I l (b) 1 ah(x.t)1% (c) the truncated
_3N/4 N/ N2 3N/4 function associated to
: 12 oh(x,t)]> when M=3/2N
"'"""ZZIIIIZIIIIIZII::\______- +1.
_
-3N/4 N2 N2  3N/4 N
- =
1 we find
Wz(t,L)=—J drGa(r,1). (B3)
2V )y 1
. . W2(t,L)= < k,t). C5
It is then easy to show that if EL6) and Eq.(17) hold true, (tL) V &0 Sk, (C5)

then the above relation implies that Eq9) is valid.
APPENDIX C: SCALING OF THE STATIONARY
STRUCTURE FACTOR
Using the Fourier expansion, we get
1 ~ .
_ ik-(x+r) _
v > hdvle

h(x+r,t)—h(xt)= e .

(CD

By substituting inGg(r ,t) one gets after few simple manipu-

lations

) 1 <
Gz<r.t>=¢§ (he(Hh_(1))2[1~cogk-1)]. (C2)

Note that, in the above equation, the tekw 0 vyields a
vanishing contribution to the sum. E(C2) can then be in-
serted in Eq(B3), yielding

1 N "
w2<t,L>=@ go (AR (D). (ek)

Therefore, since we define the structure factor from the rela-

tion

(R, (DAY =V, i, Sk, (c4

This relation can be checked to be valid directly from the

definition of W2(t,L). On the other hand from EGC2) we
also obtain, using EqC4),

2 .
Gi(r=y 2 S(kt)(1-e*" (C8)
V %o
or inverting
fddre (r,t)e” 'kf—ako(E S(k’ t)) S(k,t).
(C7)
Therefore, fork#0 one gets
1 d 2 —ik
S(k,t)z—zf d%G5(r,t)e™ " ", (C8Y
\%
If we then assume that
2 2 t
Gz(r,t):r Xg _Z l (Cg)
r
and using the standard angular integral over

d-dimensional angular variables

036134-10
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i Jarz-1(Kr)
f dee ikr cos(k r):(zﬂ_)dlz (kr)s/z—l , (ClO)
one easily gets
S(k,t)=k@ 20 P (Kkt), (C11)

where

PHYSICAL REVIEW E 65 036134

1 kL k#t
O (k) =—=(2m)Y2| ANl — | Jyn (V).
2 0 )\Z

(C12
It is then immediate to see that
d)(kzt)~[ :orzws/t for k?t>1, 13
k2xt2X'8  for k*t<1.
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